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Abstract. Heterogeneous combustion in a porous sample with only the top and bottom ends of the sample open
to gas flow is considered. Gas enters the sample due to buoyant upward convection. That is, ignition at the bottom
produces an upwardly propagating filtration combustion wave which induces hot gas to rise, thus pulling cool,
fresh gas containing oxidizer in through the bottom of the sample. The gas moves through the solid products to
reach the reaction zone just as in forced forward filtration combustion. In contrast to forced forward filtration
combustion, in which the incoming gas flux is fixed by an external source, here the incoming gas flux is determined
by the combustion process itself. That is, the incoming gas flux is determined by the burning temperature which
in turn is affected by the incoming gas flux. Thus, a feedback mechanism exists which hinders ignition of the
samples, but also makes the wave hard to extinguish, once it has formed. A one-dimensional model is analyzed
and two types of wave structure, termed reaction-leading and reaction-trailing according as the reaction occurs at
the leading or trailing edge of the heated region of the sample, respectively, are determined. For each structure, two
solution modes are described, termed stoichiometric and kinetically controlled, according as the rate of oxygen
supply or the kinetics controls propagation of the wave. In each of these four situations, expressions are derived for
the evolution of the burning temperature, propagation velocity, incoming gas flux, degree of oxidizer consumption
and degree of fuel conversion as the wave moves through the sample. In addition, profiles for the temperature are
described. Analysis of the case where significant heat is lost through the sides of the sample leads to extinction
limits and demonstrates the sensitivity of the wave structure to changes in external heat losses.
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1. Introduction

Filtration combustion (FC) describes applications such as smoldering, underground burning
of coal and petroleum beds, where combustion has been known to continue for many months,
and self-propagating high temperature synthesis (SHS) of advanced materials, which is a
promising synthesis technique that uses the internal energy of the combustion reactions,
rather than an external energy source, such as a furnace to produce desired products. In its
most general form, FC describes a heterogeneous solid/gas reaction within a porous matrix
where fluid flow through the matrix is an important aspect of the combustion process. In this
paper, we consider a model of upward buoyant FC.

Filtration of gas through a burning porous matrix can be caused by a number of mechanisms.
Filtration caused by external forcing of gas into one end of a sample is reffered to as forced
filtration [1–8]. Filtration induced by the combustion process itself, e.g. when gas is consumed
in the reaction [1, 9, 10], is referred to as natural filtration. Filtration can also be caused by
forces such as gravity. Buoyant FC refers to combustion in a porous medium where filtration
occurs due to gravity-induced buoyancy forces. We discuss buoyant FC in which the sample
is ignited from below, leading to a combustion wave which propagates upward toward the top
of the sample (see Figure 1). The sides of the sample are impermeable to gas (no cross-flow)
so that hot gas rises and exits the top, inducing cool gas to enter through the bottom to replace
the hot gas. When the gas moves in the same direction as the combustion wave, it is called
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Figure 1. A sketch of the configuration for Upward
Buoyant Filtration Combustion.

Figure 2. A sketch of the temperature profiles for
reaction-leading and reaction-trailing solution struc-
tures, indicating the length scales for the reaction
zone, lr , combustion layer lC , heat-transfer layer lh,
localized high-temperature domain lHTD and sample
size L.

co-flow or forward-flow combustion. In contrast, when the gas and the combustion wave move
in opposite directions, it is called counter-flow or opposed-flow combustion. When gas enters
through the sides of the sample, it is referred to as cross-flow combustion. In this paper, we
consider upward forward buoyant FC.

Upward smoldering combustion experiments [11, 12] have demonstrated unsteady prop-
agation in that the wave speeds up as it propagates. In these studies, oxygen is completely
consumed in the reaction, the burning temperature is approximately constant and ignition
time increases with the length of the sample. Solutions of our model describe the quasi-steady
behavior of the observed combustion waves away from the top and bottom of the sample
where end effects dominate.

Most applications of FC involve complex chemical reaction schemes. We may often simpli-
fy these schemes by considering the limiting steps in the process. For example, in smoldering
of organic materials, the process can be simplified to consideration of three reactions [4],
1) oxidative decomposition of the virgin fuel into char and product gases, 2) endothermic
pyrolysis which also converts the virgin fuel to a type of char but in an endothermic process
that does not require oxygen, 3) highly exothermic oxidation of the char. For opposed-flow
configurations, where oxygen passes through the fresh fuel, oxidative decomposition dom-
inates endothermic pyrolysis as the major producer of char. In most situations, oxygen is
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depleted in this process, so that oxidation of the char does not occur and it can be modeled
as a one-step reaction. For forward-flow configurations, oxygen enters through the product
region and is not plentiful ahead of the reaction in the region containing fresh fuel. Thus,
endothermic pyrolysis dominates oxidative decomposition in the formation of char. The heat
required for the endothermic process is provided by the oxidation of the resulting char. The
energy released during oxidation is much greater than that consumed in pyrolysis. Thus, the
process may be approximated by a one-step reaction which neglects the pyrolysis stage and
considers only the oxidation stage [13].

Each application of FC is associated with a specific reaction scheme, so that any general
theory of FC can only describe qualitative features of the process which are independent of
the details of the reaction scheme.

We describe the qualitative features of upward buoyant FC using the simple, yet general,
one-step reaction scheme,

Solid Reactant + (�) Gaseous Reactant ! (1� �g) Solid Product

+ (�g + �) Gaseous Product: (1.1)

We account for the possibility that one of the two products does not exist by the stoichiometric
parameter �g which measures the net mass of gas produced (that produced minus that con-
sumed) in the reaction of one unit mass of solid reactant. If no solid product exists �g = 1. If
no gaseous product exists,�g = ��where�measures the mass of gaseous reactant consumed
in the reaction of one unit mass of solid reactant.

Upward buoyant forward FC is similar to forced forward FC in that the oxidizer (gas
reactant) passes through the product region before reacting with the fuel (solid reactant). It
differs from forced filtration, in which the gas flux is fixed by an external source, in that here
gravity causes the gas to enter the sample and the resulting buoyant flux is determined by
the combustion wave itself. Despite the differences, comparison of the upward buoyant and
forced forward cases is useful.

We employ a one-temperature model, which is appropriate for the case of a high rate of
heat transfer between the solid and the gas. Analysis of forced forward FC models [3, 5,
14] shows that the solutions exhibit a localized high-temperature domain (HTD) in which
the temperature is essentially constant, with transition layers, ahead of and behind the HTD,
in which the temperature decreases rapidly to the ambient temperature. One transition layer,
termed the combustion layer, consists of a region in which thermal diffusion dominates and a
second narrow region within the combustion layer termed the reaction zone, in which reaction
as well as diffusion are significant. The other layer is due to the heat exchange between solid
and gas and is termed the heat-transfer layer. The propagation velocities of the two layers
are, in general, different. The velocity of the heat-transfer layer is determined by the heat
exchange between the solid and gaseous phases, while the velocity of the combustion layer is
determined by the oxidizer supply and the kinetic rate of the reaction. Two solution structures
are determined by the relative velocities (and thus, after transients, the relative positions)
of the two layers. For relatively high ambient oxidizer concentrations, the combustion layer
preceeds the heat-transfer layer and the structure is called reaction-leading. For lower oxidizer
concentrations, a reaction-trailing structure arises in which the heat-transfer layer lies ahead
of the combustion layer. We will show that the same structures arise in upward buoyant FC
(see Figure 2).
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The solutions of forced forward models are not steady-state solutions, since the layers
move at different velocities and, thus, the HTD expands as the wave propagates through the
sample. For samples much larger than the width of the combustion layer, this expansion does
not affect the propagation velocity and burning temperature, because they are determined on
the scale of the combustion layer, where time variation is negligible.

For upward buoyant combustion, there is another source of variation. As the HTD expands,
more of the gas contained in the sample is heated, increasing buoyancy, thus increasing the
incoming gas flux. The expansion rate of the HTD increases with the gas flux, so that a positive
feedback exists which causes the solution to vary at an ever increasing rate. On the scale of
the combustion layer, the time variation is still small, as long as the sample is much longer
than the combustion layer.

For each of the reaction-leading and reaction-trailing structures in the forced forward case,
there are two solution types. Stoichiometric combustion occurs when the incoming mass flux
is relatively small, so that all the oxidizer is consumed in the reaction. Note that all the fuel is
consumed as well, since the oxidizer reacts with the fuel it first encounters, so that the reaction
converts all the fuel before it proceeds along the sample. In stoichiometric combustion, the
propagation velocity of the combustion layer is determined by the incoming gas mass flux.
The second solution type is referred to as kinetically controlled. For relatively large incoming
mass flux, the combustion layer moves faster than the velocity corresponding to stoichiometric
conditions, and one reactant is in excess. The wave velocity is determined by the kinetics of
the reaction. For the reaction-leading (trailing) structure, the kinetically controlled solution
allows excess oxidizer (fuel) to pass through the combustion layer into the cool region ahead
of (behind) the wave. For upward buoyant combustion, the incoming gas flux increases as
the wave propagates along the sample. Thus, the solution type is determined by the level of
buoyancy, and may change from stoichiometric to kinetically controlled as the combustion
wave propagates.

Super-adiabatic temperatures, in which the burning temperature exceeds the temperature
obtained from burning the same reactants in a spatially homogeneous fashion without heat
losses, arise in forced forward FC. This is due to the fuel being preheated by the gas which
absorbs heat from the burned solid as it passes through the product region and transports it
to the fresh solid fuel. The level of the temperature in the HTD is determined by an energy
balance between the heat released in the reaction and the heat needed to raise the temperature
of the material added to the HTD as it expands. If the velocities of the layers are very close, the
amount of material added to the HTD due to expansion is small and the resulting temperature
is large, since the HTD is essentially constant and the heat release in the reaction leads to
an increased temperature. The temperature is theoretically unbounded as the velocities of
the two layers approach one another. In reality, effects not included in the model, such as
the decomposition of the products, keep the temperatures finite. Super-adiabatic temperatures
due to forward flow have been found experimentally long ago [15, 16]. Super-adiabatic
temperatures are also achieved in upward buoyant FC.

We also consider the effect of heat losses to the external environment. Heat losses may
restrict the size of the HTD and thus the incoming gas flux. In this case, the temperature
may decrease to the ambient value in a larger region, rather than in a thin layer, and the
entire structure may then move with a single velocity rather than the leading and trailing
layers moving with separate velocities. In general, this single velocity varies with the fraction
of the sample that has burned, which changes slowly in time for long samples as the wave
propagates. Conditions exist however, where it does not vary at all and we have a traveling
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wave solution. A traveling wave solution can be found for the non-adiabatic model under
the condition that the gas flux is not changed during the combustion process, e.g. if there is
negligible net production of gas and little change in the permeability of the sample.

Heat losses become important when the HTD becomes sufficiently long that temperature
decreases, due to external heat losses, in large portions of the sample, rather than solely in
the heat-transfer layer. In this case, the wave no longer exhibits a heat-transfer layer and the
HTD is restricted from growing longer. The entire wave moves with the single velocity of
the combustion layer. In general, the effect of heat losses is most easily seen in long samples
after sufficiently long times. We model the effect of heat loss by a term in the energy equation
which is proportional to the difference between the temperature in the sample and the ambient
temperature. This constant of proportionality depends on the cross section of the sample and
the insulation at the walls as well as other factors. The non-adiabatic case differs from the
adiabatic case in that the HTD is determined by cooling to the external environment and does
not necessarily expand as the wave moves through the sample. As a result, traveling-wave
solutions are possible in the long-time limit.

When heat loss is significant, the HTD is shorter than for the adiabatic case and it may not
expand with time. The amount of hot gas in the sample is lower and buoyancy forces must be
sufficiently strong to drive gas flux without large heated regions. This occurs for large initial
gas densities, large gravitational acceleration, or high permeability (low friction coefficient)
of the porous material. Combustion may occur under these strong buoyancy conditions, even
though heat losses are significant.

We find that the buoyancy causes the wave to become more intense as it moves through the
sample. Burning temperature, propagation velocity and induced gas flux all increase with the
burned portion of the sample. In addition, buoyancy can cause the waves to change from the
stoichiometric mode to the kinetically controlled mode at a critical position along the sample.
The transition point corresponds to a critical fraction of the sample which is burned. This
critical fraction depends on buoyancy.

We describe boundaries in parameter space between regions that support reaction-leading
and trailing waves as well as stoichiometric mode vs. kinetically controlled mode.

Heat losses may lead to extinction only in the kinetic mode. Stoichiometric waves become
kinetically controlled with increased heat losses before they are extinguished.

To describe upward buoyant FC, we make the following assumptions: 1) that the con-
figuration can support essentially one-dimensional solutions, 2) that the activation energy is
large, so that the reaction zone is thin compared to the combustion layer, 3) that the heat
exchange between gas and solid is sufficiently fast compared to the reaction process that a one
temperature model is valid, 4) that the ambient pressure is much larger than the hydrostatic-
pressure drop across the sample, so that pressure is approximately constant in the sample,
5) that the initial density of gas is much less than that of solid so that velocity of the gas
is large compared to the propagation velocity when any appreciable conversion occurs, and
so that the effective Lewis number of the porous medium is large, 6) that the permeability
of the sample is sufficiently large that gravitational forces can induce gas flow, and 7) that
the reaction dependence on the reactant concentrations is weak relative to the temperature
dependence and can be approximated by a step function. These assumptions allow us to derive
an analytical solution of the problem, for which we can determine the fundamental character-
istics of buoyancy-driven FC waves, such as combustion velocity, combustion temperature,
product composition, widths of the HTD and transition layers, and the structure of the wave
corresponding to different modes of propagation.
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In Section 1.1 we introduce the mathematical model and describe the physical assumptions
necessary to simplify the model for tractability. In Section 2 we describe solutions for the
adiabatic case. In Section 3 we consider the effect of heat losses to the external environment.
Finally, Section 4 is devoted to discussion and conclusions.

1.1. MATHEMATICAL MODEL

The model of buoyant combustion consists of equations describing conservation of energy,
gas mass, oxidizer mass, solid-reactant mass, and gas momentum, as well as an equation of
state, and appropriate boundary and initial conditions. We consider a one-dimensional model
in which gas can pass through the top and bottom of the sample. The sides are considered to
be gas impermeable, though heat losses to the external environment can occur through the
sides. Such heat losses are modeled as a global heat-loss mechanism by a term in the energy
equation which is proportional to the difference in temperature between the sample and the
external environment. The constant of proportionality, ~�, is related to the cross-sectional area
of the sample and the type of insulation at the side walls. A one-temperature model is used and
is valid for combustion waves where the time of heat transfer between solid and gas phases in
the sample is so short that the heat transfer can be considered to be instantaneous, which is the
case for typical FC processes. The following equations describe upward filtration combustion
in a sample of length L, in the laboratory coordinate system. The model is written in terms of
the temperature ~T , degree of conversion � = 1� (~�s=~�so), where ~�s is the effective density of
the solid with ~�so its initial value, effective gas pressure ~P = � ~Pactual where � is the porosity
of the sample, density ~�g, and the velocity ~vg, as well as oxidizer mass fraction ~Y .

~c1
@ ~T

@~t
� cg ~�g~vg

@ ~T

@~x
= �

@2 ~T

@~x2 + ~Q~�so ~W � ~�( ~T � ~T0); (1.2)

@~�g

@~t
� @~�g~vg

@~x
= �g ~�so ~W; (1.3)

@~�g ~Y

@~t
� @~�g~vg ~Y

@~x
=

@

@~x
D~�g

@ ~Y

@~x
� �~�so ~W; (1.4)

@�

@~t
= ~W;

@ ~P

@~x
� ~f~vg � ~�gg = 0; (1.5–1.6)

~P = ~R~�g ~T ; ~c1 = ~�socs(1� �g�cg=cs) + ~�gcg: (1.7–1.8)

Boundary conditions corresponding to upward propagation are

at ~x = �L : ~P = ~Po � g~�goL;
@ ~T

@~x
= 0;

@ ~Y

@~x
= 0; � = 0; (1.9)

at ~x = 0: ~P = ~Po; ~T = ~To; ~Y = ~Yo: (1.10)

Initial conditions are discussed below.
Parameters of the system include the heat capacities cg and cs for the gas and solid,

respectively, the effective densities ~�g; ~�s; ~�go and ~�so which take into account the porosity �
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of the sample (thus, ~�g = �~�g actual and ~�s = (1 � �)~�actual), the thermal conductivity of the
mixture �, the permeability of the samples as measured by the filtration coefficient ~f which is
taken to be a known constant ~f� for the fuel region, and a possibly different constant ~f+ for
the product region, the diffusivityD of the oxidizer through the gas, the universal gas constant
divided by the molecular weight of the gas ~R, the gravitational acceleration g, the length of
the sample L, and the heat released in the reaction ~Q, the stoichiometric ratio of the mass of
oxidizer and solid fuel consumed in the reaction � and a similar ratio for the net mass of gas
�g released in the reaction to mass of solid fuel consumed. Note that �g < 0 if more gas is
consumed than released in the reaction. The temporal and spatial variables are denoted ~t and
~x, respectively, and the reaction rate ~W depends on the temperature, and the concentration of
each reactant

~W = H(1� �)H( ~Y )K0 e�
~E

R ~T : (1.11)

Here H is the Heaviside step function, so that the kinetic dependence on the reactants is
referred to as zero-order reaction dependence, which is a good approximation for reactions
with a weak dependence on reactant concentrations. The temperature dependence is taken to
be of Arrhenius type with activation energy ~E, pre-exponential factorK0, and gas constantR.

We assume that the length L of the sample is much larger than all other length scales
except that of pressure changes due to hydrostatic pressure. In particular, the sample is much
longer than the length of the combustion layer lc(L� lc). We assume that the pressure drop
across the sample due to buoyant hydrostatic forces is much less than the ambient pressure,
so that the pressure is essentially constant throughout the sample. This is reasonable for all
but extremely high-gravitational environments. We consider gas velocities to be much larger
than the velocity of propagation ~u of the combustion wave (~vg � ~u), which is the case
when the permeability of the porous matrix is sufficiently high to allow gas fluxes to be
comparable to the mass-conversion rate of the solid (~�so~u). Finally, we use large activation
energy asymptotics to consider the resulting narrow reaction region as a front.

We seek propagating-wave solutions, and therefore transform to a moving-coordinate
system attached to the site (~x = ��) where the reaction rate is maximal. In the limit of
large activation energy the region where the reaction is significant shrinks to a front and the
coordinate is attached to the front. We denote the new spatial coordinate by x̂ = ~x+�(~t) and
the velocity of the front as ~u = �~t. In general, steady-state traveling-wave solutions do not
exist for this system. As with other combustion systems in which the flux is determined by
processes inside the sample, the wave changes its characteristics as it moves along the sample.
In particular, the solution depends on the relative position' = �=L of the front, since buoyant
forces increase as more of the sample is heated.

Figure 2 shows a sketch of the temperature profile in the sample for the reaction-leading
and reaction-trailing structures. The characteristic length scales for the reaction zone lr,
combustion layer lC , HTD lHTD, heat-transfer layer lh, and sample size L are indicated. The
length scale of cooling l�, which is not shown, is the scale on which the temperature profile
decays due to external heat losses. Thus, l� increases as heat losses decrease. In our analysis
the reaction zone is assumed to be thin lr � lc, so that the narrow reaction zone, or front
approximation, is valid, and the sample is assumed to be long, L � lc; lh; l�. We consider
separately the cases when heat losses are negligible (lHTD � l�) and when they are not.

In the next section, we simplify the model using the above assumptions by considering the
momentum equation (Darcy’s Law) (1.6) to derive a leading-order integral relation between
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the gas flux induced by buoyancy forces and an appropriate average temperature in the sample.
Then we use this relation in place of the momentum equation in our model. We also determine
a relation between the position of the heat-transfer layer and that of the combustion layer, and
we replace the spatially distributed reaction terms with jump conditions across the reaction
site x̂ = 0. In subsequent sections, we describe solutions to this system.

1.2. SCALING AND THIN REACTION ZONES

In this section, we use the relative scales of the problem to reduce the momentum equation
to a more tractable form, to determine the position of the heat transfer layer relative to the
combustion layer, and to replace the spatially distributed reaction terms with a loacalized
reaction at x̂ = 0. Nondimensional variables and parameters are introduced to formulate the
scaling and simplify the analysis. For clarity, all solutions of the leading-order equations are
displayed in dimensional as well as nondimensional form.

We introduce the following nondimensional variables,

T = ~T= ~T�; � = ~�g=~�go; P = ~P= ~Po; Y = ~Y = ~Yo;

U = cs~�so~u=U�; V = cg ~�g(~vg � ~u)=U�; ' = �=L; ` = lHTD=L: (1.12)

where U represents the fuel-conversion rate, i.e. the amount of solid fuel passing through the
reaction site, V represents the gas flux passing through the reaction site, and ` represents the
as yet unknown position of the heat-transfer layer. Note that `may be positive or negative. It is
positive (negative) in the reaction-leading (trailing) structure. We also introduce the parameters

p =
~Po

g~�goL
� 1; r =

~�gocg

~�socs
� 1; Le =

�

D~�gocg
� 1; B =

g~�2
gocg

~f+U�
;

q =
~Q

cs ~T�
; To =

~To
~T�
; F =

~f�
~f+
; f =

~f

~f+
; �o =

�g ~Yo

�
; � =

�cg
~Yocs

;

W =
~WL~�socs

U�
; E =

~E

R ~T�
; � =

~��

U2
�

; " =
�

LU�
=
lC

L
� 1: (1.13)

The spatial and temporal variables are scaled as

x =
x̂

L
=

~x+ �(~t)

L
; t =

U�~t

L~�socs
: (1.14)

The reference temperature ~T� is given by

~T� = ~To +
~Q=cs

j1� �(1 + �o)j ; (1.15)

which we will show is the burning temperature for the stoichiometric mode of propagation.
The reference heat capacity weighted solid-consumption rate U� is given by

U� = cs

vuut2�~�soKoR ~T 2
�

~E ~Q
e
�

~E

2R ~T
� : (1.16)
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The nondimensional reaction rate W is

W = 1
2qE"

�1H(1� �)H(Y ) eE(1�1=T ): (1.17)

The nondimensional formulation of the system of equations is

(r�+ 1� �o��)
@T

@t
+
�

"
(T � To) + C

@T

@x
� "

@2T

@x2 = qW; (1.18)

r
@�

@t
� @V

@x
= �o�W; r

@�Y

@t
� @

@x

�
V Y +

"�

Le
@Y

@x

�
= ��W; (1.19–1.20)

@�

@t
+ U

@�

@x
= W; (1.21)

p
@P

@x
� f

B

�
V

�
+ Ur

�
� � = 0; P = �T=To; (1.22–1.23)

where

C = (1� �o��)U � V: (1.24)

The boundary conditions are

at x = '� 1: P = 1� 1
p
;

@T

@x
= 0;

@Y

@x
= 0; � = 0;

at x = ' : P = 1; T = To; Y = 1: (1.25)

We simplify the model by employing the assumptions stated previously and restated here
in terms of the nondimensional parameters of the problem. The resulting system is solved for
the temperature T , degree of solid conversion �, gass mass flux V , oxidizer mass fraction
Y , and fuel consumption rate U . The assumption that the hydrostatic pressure is much less
than ambient pressure, g~�goL � ~Po, implies that p � 1. The assumption that ~vg � ~u can
be stated in terms of the nondimensional parameters as r � 1 and B = O(1). The condition
r � 1 states that the initial density of gas is much less than the density of the solid. We note
that it implies that the time derivative terms in (1.19) and (1.20) are negligible. It also implies
that the effective Lewis number Le � 1. For example, even for a very porous material such
as polyeurethane foam, with a void fraction which exceeds 90%, using the data in [20, 21],
we estimate an effective Lewis number of 60. The condition B=r � 1 corresponds to highly
permeable samples and B = O(1) ensures significant conversion of the solid. The condition
that the scale of the combustion layer is much less than the length of the sample is stated as
"� 1. We proceed to find a leading-order model for p� 1; r � 1 and Le � 1. In this model
we retain the small parameter ". Employing this model, we describe solutions that vary on the
slow-time scale "t.

First, we consider the momentum equation (Darcy’s Law) (1.6) to derive an integral relation
between the gas flux induced by buoyancy forces and an appropriate average temperature in
the sample. This relation will replace the momentum equation in our system. Then, we replace
the spatially distributed reaction terms with jump conditions across the reaction site x = 0.
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Finally, we derive a relation between the position of the heat-transfer layer `, and that of the
combustion layer, '. In subsequent sections, we describe solutions to this system.

For p� 1, (1.22) implies that the pressure is constant in space, so that by the equation of
state (1.23), density is inversely proportional to temperature,

� �= To=T: (1.26)

The momentum equation (1.22) can be integrated across the sample to obtain a relation
between V and an average temperature. Using (1.26) and integrating (1.22) across the entire
sample, we obtain
Z '

'�1

fV T

To
dx = B

Z '

'�1

�
1� To

T

�
dx; (1.27)

which is a relation between the buoyancy-driven mass flux V , and spatial averages of the
temperature and its inverse. The right-hand side of the relation represents the buoyant force
which increases with gravity (through B) and with temperature. The left-hand side represents
the resistance or frictional forces. Equation (1.27) will be used to replace Darcy’s Law (1.6)
in our model.

We now proceed to replace the reaction zone by a front, a process known as large-activation-
energy asymptotics. The reaction term in the equations is replaced by jump conditions across
the front. On the scale of the combustion layer, the large activation energy implies that the
reaction zone is thin. Using large activation energy asymptotics, we replace the spatially
distributed reaction terms in equations (1.18)–(1.24) with a localized reaction at x = 0.
Replacing the reaction terms with conditions at x = 0, we obtain equations without the
reaction terms which are valid away from x = 0, and jump conditions across the front given
by

[T ]o = 0; [�]o = 0; (1.28)

"

�
@T

@x

�
o

= �qU [�]o; [V ]o = ��o�U [�]o; [V Y ]o = �U [�]o; (1.29)

where [z(x)]o = z(0+)�z(0�) denotes the jump in the quantity z across the front. In general,
[z(x)]w = z(x = w+)� z(x = w�).

We derive two additional conditions from integral relations obtained by integrating Equa-
tion (1.18) in the reaction zone,

�
@T

@x

�2 ����
x=0

�

=
q2E

"2

Z Tb

To

H(Y ) eE(1�1=T ) dT; (1.30)

�
@T

@x

�2 ����
x=0+

=
q2E

"2

Z Tb

To

H(1� �) eE(1�1=T ) dT: (1.31)

The integrals depend on the reactant concentrations and, in particular, the temperature where
the reaction rate is affected by reactant concentration. We define

�1 = I�1
R

Z Tb

To

H(Y ) eE(1�1=T ) dT; (1.32)
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and

�2 = I�1
R

Z Tb

To

H(1� �) eE(1�1=T ) dT; (1.33)

where the integral IR is

IR �
Z Tb

To

eE(1�1=T ) dT �= T 2
b

E
eE(1�1=Tb); (1.34)

and the asymptotic evaluation shown in Equation (1.34) holds for narrow reaction zones (i.e.
for asymptotically large Zeldovich Number Z = ~E( ~T� � ~To)=R ~T 2

�
= E(1 � To=T ) � 1).

The conditions (1.30) and (1.31) become

�
@T

@x

�2 ����
x=0

�

=

�
qTb

"

�2

�1 eE(1�1=Tb); (1.35)

�
@T

@x

�2 ����
x=0+

=

�
qTb

"

�2

�2 eE(1�1=Tb): (1.36)

The variables �1 and �2 are as yet unknown, but we now argue that

(1� �1)Y� = 0; (1� �2)(1� �+) = 0; (1.37–1.38)

and �1; �2 6 1 where Y� denotes the value of Y immediately ahead of the front and �+
denotes the value of � immediately behind the front. The definitions (1.32)–(1.34) ensure that
�1; �2 � 1, with �1 = 1 if and only if H(Y ) = 1 ahead of the front and �2 = 1 if and only
if H(1 � �) = 1 behind the front. Thus, �1 < 1 when the reaction terminates due to lack of
oxygen (Y� = 0) and Y� > 0 ensures �1 = 1. Similarly, �2 < 1 when the reaction terminates
due to lack of solid fuel (�+ = 1) and �+ < 1 ensures �2 = 1.

Equations (1.28), (1.29), and (1.35)–(1.38) are conditions for quantities at the reaction site
which allow us to match the solutions determined on either side of the front.

We now proceed to a discussion of the location of the combustion and heat-transfer layers.
The reaction zone lies at x = 0, within the combustion layer. On the scale of the sample, the
position of the combustion layer can thus be taken to be x = 0. The portion of the sample
that has been burned is measured by '. By determining ', we thus determine the position of
the combustion layer in laboratory coordinates. Furthermore, a relation between the position
of the heat-transfer layer x = ` and the burned portion of the sample ' can be obtained by
examination of the energy equation (1.18) in the adiabatic case. We now proceed to find this
relation. This derivation closely follows that presented in [6, 14] for the forced-flow case. The
non-adiabatic case, when heat losses are significant, does not exhibit a heat-transfer layer, so
such an analysis is not needed.

We consider (1.18), using a coordinate system chosen so that the burned region of the
sample has a fixed length. This time-dependent spatial coordinate � = x=' also ensures that
the heat-transfer layer does not move with time. Solving for the position �cr of the heat-transfer
layer and writing this expression in our original coordinates we obtain a relation between `

and '.
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To leading order for r � 1 and for � = 0, Equation (1.18) can be written in the new
coordinate system as

'2(1� �o��)
@T

@t
+ '((1� �o��)(1� �)U � V )

@T

@�
� "

@2T

@�2 = 0: (1.39)

We seek stationary (time-independent) solutions of (1.39) in the moving coordinate system � ,
and thus neglect the time-derivative term, to obtain

'((1� �o��)(1 � �)U � V )
@T

@�
� "

@2T

@�2 = 0: (1.40)

Boundary conditions for the temperature in this domain are

at � = 0: T = Tb; at � = 1: T = To; (1.41)

For " � 1 we have a singular-perturbation problem. The outer solution is given by T = Tb
for 0 < � < �cr, and T = To for �cr < � < 1. The solution exhibits an interior layer (the
heat-transfer layer) at � = �cr. We can determine the location �cr by examining the coefficients
of (1.40). The equation ensures that @T=@� = O("), unless its coefficient is zero. The position
of �cr is determined as that value of � for which the coefficient is zero. Thus,

�cr =
`

'
= 1� V

U(1� �o��)
: (1.42)

In this expression, V and � should be evaluated at the heat-transfer layer. We will show that
for the reaction-leading structure, at the heat-transfer layer, � = 1 and we denote V = V+, so
that,

` = '

�
1� V+

U(1� �o�)

�
: (1.43)

For the reaction-trailing structure, we denote the values at the heat-transfer layer as � = �b
and V = V�, so that,

` = '

�
1� V�

U(1� �o��b)

�
: (1.44)

Temperature varies in the heat-transfer layer from the burning temperature to the initial
temperature. On the scale of the sample, this is a jump in temperature. Other variables are
continuous across the layer, so we impose a single jump condition at the position of the
heat-transfer layer x = `,

[T ]` � T j`+ � T j`� = �(Tb � To)C=jCj; (1.45)

where the term C=jCj is positive or negative, depending on whether the solution structure is
reaction-leading or trailing.

We now summarize our assumptions and the simplified model that results from these
assumptions. We have replaced the reaction terms by jump conditions at the front. We have
used the assumptions p� 1; r � 1, and Le � 1 to obtain leading-order equations, replacing
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the momentum equation with an appropriately derived integral relation. For now, we retain
the small parameter " in the equations. In subsequent sections, we show that " determines the
time scale upon which the solutions depend, so that " � 1 corresponds to slowly varying
waves. Density decouples from the equations as it is slaved to temperature by the equation
of state and the fact that the pressure is essentially constant. For simplicity of exposition, we
drop the equation of state and the variable � from consideration.

The model we consider is thus given by

(1� �o��)
@T

@t
+
�

"
(T � To) + C

@T

@x
� "

@2T

@x2 = 0; (1.46)

@V

@x
= 0;

@V Y

@x
= 0;

@�

@t
+ U

@�

@x
= 0; (1.47–1.49)

B

Z '

'�1

�
1� To

T

�
dx =

Z '

'�1

fV T

To
dx; (1.50)

where

C = U(1� �o��) � V: (1.51)

The conditions at the reaction site x = 0 are

[T ]o = 0; [�]o = 0; (1.52)

"

�
@T

@x

�
o

= �qU [�]o; [V ]o = ��o�U [�]o; [V Y ]o = �U [�]o; (1.53)

�
@T

@x

�2 ����
x=0

�

=

�
qTb

"

�2

�1 eE(1�1=Tb); (1� �1)Y� = 0; (1.54–1.55)

�
@T

@x

�2 ����
x=0+

=

�
qTb

"

�2

�2 eE(1�1=Tb); (1� �2)(1� �+) = 0: (1.56–1.57)

The jump condition at the heat-transfer layer at x = ` is

[T ]` = �(Tb � To)C=jcj; (1.58)

where

` =
'C

U(1� �o��)
= '

�
1� V

U(1� �o��)

�
; (1.59)

and the boundary conditions are

at x = '� 1:
@T

@x
= 0;

@Y

@x
= 0; � = 0; (1.60)

at x = ' : T = To; Y = 1: (1.61)
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Initial conditions are assumed to be sufficiently close to the wave solutions that the transient
time is negligibly small. Thus, we discuss wave solutions which arise after transients have
dissipated. The sample is initially cool at temperature To, and, while the temperature of the
incoming gas is not necessarily To, we choose it to be so for ease of exposition.

We now proceed to derive solutions to this system for two cases depending on the relative
lengths of the HTD, lHTD = j`Lj, and the cooling length l� = 2=(

p
C2 + 4� � jCj). In

Section 2, we consider the case lHTD � l�, or adiabatic combustion in which heat losses can
be neglected, because the temperature drops in the heat-transfer layer before heat losses can
have an effect. Since lHTD grows with time, these solutions are valid only for intermediate
times, i.e. after the ignition process and before heat losses affect the wave structure. In
Section 3, we consider sufficiently large lHTD for heat losses to affect the structure. These
solutions are valid in the long-time limit and are observed in sufficiently long samples. We
require the samples to be sufficiently long for the combustion wave to be completely contained
within the sample.

2. Adiabatic combustion

We now consider adiabatic combustion, that is, we consider the system (1.46)–(1.61) with
� = 0. As in the case of forced forward FC, we find two solution structures referred to as
reaction-leading and reaction trailing. We further categorize solution within each structure as
stoichiometric, if both of the reactants are completely consumed in the reaction, and kinetically
controlled if either reactant remains after combustion.

We first examine the equations on the scale of the sample and consider the limit that the
unburned portion of the sample is much longer than the length scales of both the heat-transfer
layer and the combustion layer,L��� lc; lh or equivalently "� 1. We look for quasi-steady
solutions in which the profile changes only due to the relative motion of the layers. Thus,
changes occur on the slow-time scale � = "t. To leading order, the temperature is spatially
piecewise constant with cool regions at the temperature To ahead of and behind the HTD.
On this scale, the solution appears to have jumps in temperature at each end of the HTD. On
smaller scales, these jumps are, in fact, layers (the combustion and heat-transfer layers). Time
dependence arises only through ' and ` which change slowly as the reaction proceeds along
the sample.

We examine the equations on the scale X = x=" of the combustion layer to determine the
structure of the layers. The solutions depend on constants which are determined by the jump
conditions at the reaction site. These conditions determine whether the solution structure is
reaction-leading or reaction-trailing and we consider each separately. Rewriting (1.46)–(1.49)
to reflect the adiabatic quasi-steady assumptions, which we verify for the solutions below,
yields

C
@T

@X
� @2T

@X2 = 0;
@Y

@X
= 0;

@V

@X
= 0;

@�

@X
= 0; (2.1–2.4)

C = U(1� �o��) � V: (2.5)

Note that (2.3) and (2.4) ensure that C has no spatial variation. The solution of (2.1)–(2.4)
for X < 0 is

� = 0; V = V�; (2.6)
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T = To + (Tb � To) ek1X ; Y = Y�; (2.7)

where k1 = max(0; C). The solution for X > 0 is

� = �b; V = V+; T = To + (Tb � To) ek2X ; Y = Y+ = 1; (2.8–2.9)

where k2 = min(0; C). The coefficients k1 and k2 change form whenC changes sign, because
the structure of the solution changes from reaction-leading (C > 0) to reaction-trailing
(C < 0). We first consider reaction-leading structures and then reaction-trailing.

2.1. REACTION-LEADING STRUCTURE

Equations (2.6)–(2.9) and the conditions (1.52)–(1.59) determine the unknownsTb; U; V+; V�;
C; �b; �1; �2; ` and Y� in terms of '. For the reaction-leading structure (C > 0), the equations
determining these quantities are

�1 = C2(Tb � To)
2T�2

b eE(1=Tb�1); (2.10)

�2 = 0; (1� �1)Y� = 0; (1� �2)(1� �b) = 0; (2.11–2.13)

Tb = To + qU=C; V+ = V� � �o�U; V� = Y�V� + �U; (2.14–2.16)

C = U � V� = U(1� �o�) � V+; ` = '

�
1� V+

U(1� �o�)

�
; (2.17–2.18)

V+['+ `(Tb=To � 1) + F (1� ')V�=V+] = B`(1� To=Tb): (2.19)

Equations (2.11) and (2.13) show that the reaction-leading structure always leads to com-
plete conversion�b = 1. The solution is either stoichiometric or kinetically controlled, depend-
ing on whetherY� = 0. Consider first the stoichiometric case,Y� = 0, for which (2.16) yields

V+ = �U: (2.20)

Using (2.15), (2.18)–(2.20), we solve for V+ in terms of ' as

V+ =
B'

�
1��(1+�o)

1��0�

��
Tb�To
Tb

�
F (1 + �o) + '

h
1� F (1 + �o) +

�
Tb
To
� 1

��
1��(1+�o)

1��o�

�i ; (2.21)

where

Tb = To +
q

1� �(1 + �o)
= 1; (2.22)

by (2.14)–(2.15), (2.20) and the scaling of the nondimensional temperature (1.15). In dimen-
sional variables, (2.21) is

~�g(~vg � ~u)+ =

g~�2
go�

�
~Tb� ~To
~Tb

��
~Yocs��cg��g ~Yocg

~Yocs��g ~Yocg

�

L ~f�

�
1 +

�g ~Yo
�

�
+ �

�
~f+ � ~f�

�
1 +

�g ~Yo
�

�
+
�
~Tb
~To
� 1

��
~Yocs��cg��g ~Yocg

~Yocs��g ~Yocg

�� : (2.23)
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The dimensional burning temperature is

~Tb = ~To +
~Q ~Yo

cs ~Yo � �cg � �gcg ~Yo
: (2.24)

It can be seen that ~Tb may exceed the value

~T ad
b = ~To +

~Q ~Yo

cs ~Yo + �cg
; (2.25)

which is the thermodynamic adiabatic combustion temperature of a stoichiometric mixture of
porous solid and ambient gas. Thus, for upward buoyant FC, superadiabatic temperatures are
attainable. From (2.14)–(2.17) the unknowns V�; U , and C can be written in terms of V+ as

V� = V+(1 + �o); U = V+=�; (2.26–2.27)

and (2.18) yields

C = V+(�
�1 � �o � 1): (2.28)

The position of the heat transfer layer ` is proportional to ' as

` = '

�
1� �

1� �o�

�
: (2.29)

Temperature is constant in time; gas flux and propagation velocity increase (slowly) with
'. Figure 3 shows the change in propagation velocity with ' for a representative choice of
parameter values. Rates of increase are higher for parameter values favoring flow (e.g. large F
or small To). Propagation velocity and gas flux increase proportionally to gravitational forces.
For sufficiently large gravitational forces, the flow becomes sufficiently large that oxidizer
supply does not restrict the reaction and the wave switches from the stoichiometric mode to
the kinetically controlled mode.

Figure 3. A typical trajectory of the propagation veloc-
ity as a reaction-leading, stoichiometric wave moves
through the sample. Here, To = 0�2; � = 0�486; E =

5; B = 1�0; F = 1�5, and �o = 1�05.

Figure 4. A typical trajectory of the burning tem-
perature as a reaction-leading, stoichiometric wave
becomes kinetically controlled, while moving through
the sample. Here, To = 0�2; � = 0�47; E = 5; B =

29; F = 2�5, and �o = 0�5:
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Now consider the kinetically controlled case,Y� > 0, where oxygen is supplied in sufficient
quantities that kinetics limit the propagation of the wave and oxygen leaks through the reaction
zone. For Y� > 0, Equation (2.12) ensures that �1 = 1. Equations (2.14) and (2.17) yield

U

V+
=

1
1� �o� � (q=(Tb � To))

; (2.30)

which together with (2.10) allows us to formulate an implicit equation for Tb in terms of ',

Tb

q
e

1
2E(1�1=Tb) =

'B q
Tb(1��o�)�

1� �o� � q
Tb�To

��
'
�

1 + q
To(1��o�)

�
+ F (1� ')

�
1� q

Tb�To

1��o��
q

Tb�To

�� : (2.31)

The dimensional relation is

~Tbcs
~Q

vuut2��soKoR ~T 2
�

~E ~Q
e
�

~E

2R ~Tb =

=
g~�2

gocg�
~Q

~Tb(cs��gcg)�
cs � �gcg � ~Q

~Tb� ~To

��
~f+�

�
1 + q

~To(cs+�gcg)

�
+ ~f�(L� �)

�
cs( ~Tb� ~To)� ~Q

( ~Tb� ~To)(cs��gcg)� ~Q

�� :

(2.32)

We can write the unknowns V�; V+; U; C; Y� and ` in terms of Tb, using (2.14)–(2.18) as

U =
Tb

q
e

1
2E(1�1=Tb); (2.33)

C = Uq=(Tb � To); V� = U � C; V+ = V� � �o�U; (2.34–2.36)

Y� =
1� �(1 + �o)� q=(Tb � To)

1� q=(Tb � To)
; ` = '

q

(Tb � To)(1� �o�)
: (2.37–2.38)

The burning temperature Tb increases with '. Figure 4 shows the change in Tb for rep-
resentative parameter values. Rates of increase depend on F . For large F , the increase is
quite strong and in complex reacting systems, such as smoldering, new reactions may become
important. While transition to flaming is not described by the model, this sharp increase in Tb
may indicate a mechanism of the transition. If so, this model predicts that for a given material,
flaming would occur at a particular burned portion of the sample, independent of the length
of the sample.

The transition between stoichiometric and kinetically controlled solutions occurs for para-
meter values such that equation (2.37) yields Y� = 0. The temperature Tb corresponding to
that point is identical to that in (2.22), i.e. Tb = 1, and plugging into (2.31) we obtain an
expression for the critical burn portion ' = 'cr for which the transition occurs,

'cr =
�F (1 + �o)

1 + q
To(1��o�)

� F (1 + �o)� q2B
(1��o�)�

: (2.39)
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For 'cr > 1, this transition will not occur during the burning of the sample. For ' > 'cr,
the flux is sufficient to induce kinetically controlled waves. For ' < 'cr, the flux restricts the
wave to stoichiometric propagation.

We now consider the reaction-trailing solution structure.

2.2. REACTION-TRAILING STRUCTURE

As for the reaction-leading structure, Equations (2.6)–(2.9) and the conditions (1.52)–(1.59)
are sufficient to determine Tb; U; V+; V�; C; �b; Y�; `; �1 and �2 in terms of '. The reaction-
trailing structure occurs when C < 0 and the equations to determine the unknowns can be
written,

�1 = 0; �2 =
C2(Tb � To)

2

T 2
b

eE(1=Tb�1); (2.40–2.41)

(1� �1)Y� = 0; (1� �2)(1� �b) = 0; Tb = To � qU�b=C; (2.42–2.44)

V+ = V� � �o�U�b; V+ = �U�b; C = U � V�; (2.45–2.47)

` = max
�
'� 1; '

�
1� V�

U

��
; V+ =

�`B Tb�To
Tb

'+ F
V
�

V+

�
�`Tb�To

To
+ 1� '

� : (2.48–2.49)

Notice that ` < 0 when C < 0. This means that the heat-transfer layer occurs ahead of the
combustion layer and we have a reaction-trailing structure as supposed.

The restriction ` > ' � 1 in (2.48) arises because the heat-transfer layer may leave the
sample, while the reaction is still propagating. In that case, assuming the heated gas leaving
the sample does not influence the buoyancy process, e.g. there is no chimney, we observe that
the equations as derived are valid for ` = '� 1.

Equations (2.40) and (2.42) show that Y� = 0 for the reaction-trailing structure. The
solution is stoichiometric or kinetically controlled, depending on whether �b = 1. We first
consider the stoichiometric case �b = 1, and obtain from (2.45) and (2.49) an expression for
V+ in terms of ' and ` as,

V+ =
�`B Tb�To

Tb

F (1 + �o)
�

1� '� `Tb�To
To

+ '
F (1+�o)

� ; (2.50)

where

Tb = To +
q

�(1 + �o)� 1
= 1; (2.51)

by (2.44), (2.47) and the scaling of temperature (1.15). The position of the heat-transfer layer
`, given by (2.45), (2.46) and (2.48), is

` = max['� 1; '(1� �(1 + �o))]: (2.52)

The dimensional relation is given by

~�g(~vg � ~u)+ = � g~�2
go
~̀( ~Tb � ~To)= ~Tb

~f�

�
1 +

�g ~Yo
�

�
[L� �� ~̀( ~Tb � ~To)= ~To] + � ~f+

: (2.53)
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Figure 5. A typical trajectory of the propagation velocity as a reaction-trailing, stoichiometric wave moves through
the sample. Here, To = 0�2; � = 1�5; E = 5; B = 1�0; F = 1�0, and �o = 1�0.

We can write the unknowns V�; U , and C , using (2.45)–(2.47) in terms of V+, as

V� = V+(1 + �o); U = V+=�; C = U(1� �(1 + �o)): (2.54–2.56)

As for the reaction-leading structure, the burning temperature does not vary in the stoi-
chiometric mode. The gas flux and propagation velocity increase with '. The curve (Figure 5)
showingU vs.' is concave downward, indicating thatU will increase at a slower rate as' gets
larger. This in contrast to the reaction-leading structure where the rate of increase accelerated
with '. Values of F , and To, which favor flow yield a sharper bend in the curve. Much of the
increase occurs for small ' and U is relatively constant for larger '.

The kinetically controlled case occurs when �b < 1 and by (2.43) �2 = 1. Here fuel leakage
occurs because it is cooled by the incoming gas before it can burn. In a similar manner to
the reaction-leading structure, using (2.41), (2.44), (2.46) and (2.49), we obtain an implicit
expression to determine Tb,

F (1 + �o)�
Tb

q
e

1
2E(1�1=Tb) =

�`B(Tb � To)=Tb

1� `(Tb � To)=To + '(F�1(1 + �o)�1 � 1)
; (2.57)

where

` = max
�
'� 1; '

q

q � �(1 + �o)(Tb � To)

�
: (2.58)

The dimensional version of this expression isvuut2��soKoR ~T 2
�

~E ~Q

~Tbcs
~Q

e
�

~E

2R ~Tb
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= � g~�2
go
~̀( ~Tb � ~To)= ~Tb

~f�(�cg= ~Yo + �gcg)[L� ~̀( ~Tb � ~To)=To] + ��cg= ~Yo � ( ~f+ � ~f�(1 + �g ~Yo=�))
:

(2.59)

The unknowns V+; V�; U; �b and C can be written by means of (2.41), and (2.44)–(2.47) in
terms of Tb as

V+ = �
Tb

q
e

1
2 E(1�1=Tb); V� = V+(1 + �o); C = �V+

�

q

Tb � To
(2.60–2.62)

U = V+�
�1(�(1 + �o)� q=(Tb � To)) (2.63)

�b = [�(1 + �o)� q=(Tb � To)]
�1 (2.64)

The transition between stoichiometric and kinetically controlled solutions occurs for para-
meter values such that (2.64) yields �b = 1. This condition is identical to (2.51), so that
plugging into (2.57) we obtain an expression for the critical burned portion ' = 'cr where
the transition occurs,

'cr =
�F (1 + �o)

�(F (1 + �o)� 1) + (�(1 + �o)� 1)[Bq(1� To)� �F (1 + �o)(1=To � 1)]
: (2.65)

For 'cr > 1, this transition will not occur during the burning of the sample. For ' < (>)'cr,
the solution is stoichiometric (kinetically) controlled.

We note that solutions will not change from reaction-trailing to reaction leading during
propagation. The expressions for the flux-weighted heat capacityC in each solution show that
as ' increases C does not change sign.

By examining a change in the initial parameters of the problem, however, we see that the
model predicts whether reaction-trailing or leading solutions will be obtained. First note that
the kinetically controlled solutions do not allow changes in the sign of C . Thus, near the
boundary between regions, only stoichiometric solutions will be relevant. For stoichiometric
solutions, (2.28) and (2.56) show that the critical parameter values are

�(1 + �o) = 1: (2.66)

For �(1 + �o) < (>)1, reaction-leading (trailing) solutions occur. This matches the result
obtained for forced FC. The analysis in [6, 14] shows that the boundary is independent of
incoming gas flux, so it is not surprising that buoyancy retains this feature.

3. External heat losses

We now move to a treatment of external heat losses from the system. Heat losses to the external
environment become important when the distance between the combustion layer and the heat
transfer layer is sufficiently long that heat lost to the external environment is large compared
to the heat transferred to the fresh reactants in the heat-transfer layer for the adiabatic case.
Reaction-leading structure waves occur when the incoming gas cools the burned region, while
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reaction-trailing structure waves occur when the fresh fuel cools the gas which has been heated
while passing through the reaction site.

In contrast, when heat losses are important, the change in temperature at the heat-transfer
layer is not significant. The temperature profile consists of a high-temperature region near the
combustion layer which decays exponentially outside that region. The temperature decreases
due to heat losses before the heat-transfer layer is reached. We assume that the decay is
sufficiently fast that the temperature at each end of the sample is approximately the ambient
temperature i.e. L� l�. Thus, the wave is completely contained within the sample.

We again find two solution structures which we label reaction-leading and reaction-trailing,
as for the adiabatic case, according to the sign of the effective heat capacity C of the material
passing through the reaction site. We look for quasi-steady solutions varying on the scale of
the slow time � = "t. Time dependence arises only through ' which changes slowly as the
reaction proceeds through the sample. We examine (1.46)–(1.61) on the scale X = x=" of the
combustion layer to obtain

�(T � To) +C
@T

@X
� @2T

@X2 = 0; (3.1)

@Y

@X
= 0;

@V

@X
= 0;

@�

@X
= 0; C = U(1� �o��)� V: (3.2–3.5)

Note that (3.3) and (3.4) ensure that C has no spatial variation. The solution of (3.1)–(3.4)
for X < 0 is

� = 0; V = V�; T = To + (Tb � To) ek1X ; Y = Y�; (3.6–3.7)

where

k1 = 1
2(C +

p
C2 + 4�) > 0: (3.8)

The solution for X > 0 is

� = �b; V = V+; T = To + (Tb � To) ek2X ; Y = 1; (3.9–3.10)

where

k2 = 1
2(C �

p
C2 + 4�) < 0: (3.11)

Evaluating the integrals in Equation (1.50) for the case "� 1, we obtain

V+'+ FV�(1� ') = "B��1 log(Tb=To)
p
C2 + 4�: (3.12)

For significant flux to occur, we must have "B = O(1). For B = O(1), the model
predicts extinction when heat losses are significant. This agrees with [11] who note that under
normal gravity conditions, heat losses must be reduced for combustion to occur. In addition, it
predicts that by increasing B = g~�2

gocg=f+U�, we may attain smolder propagation, even with
significant heat losses. The resistance and frictional forces act over the entire sample, while
buoyancy can only be driven by the heated portion of the sample. Since external heat loss
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reduces the size of the heated portion of the sample, B = O("�1) is required for propagation.
We retain the coefficient "B in our leading-order analysis, assuming that it is anO(1) quantity.

Equations (3.6)–(3.12) and conditions (1.52)–(1.57) are sufficient to determine the un-
knowns Tb; U; V�; V+; C; �b; Y�; �1 and �2 in terms of '. The equations determining these
unknowns for both reaction-leading and trailing solutions can be written

�1 =
(C +

p
C2 + 4�)2(Tb � To)

2

4q2T 2
b

eE(1=Tb�1); (3.13)

�2 =
(C �

p
C2 + 4�)2(Tb � To)

2

4q2T 2
b

eE(1=Tb�1); (3.14)

(1� �1)Y� = 0; (1� �2)(1� �b) = 0; (3.15–3.16)

Tb = To +
qU�bp
C2 + 4�

; (3.17)

V+ = V� � �o�U�b; V+ = V�Y� + �U�b; (3.18–3.19)

C = U � V�;
V+

U�b
=

"B
�

q
Tb�To

log(Tb=To)

'+ F (V�=V+)(1� ')
: (3.20–3.21)

Traveling waves are found as a special case of these slowly varying waves. The slow variation
arises due to the change in ' with time in (3.21). In the special case when FV� = V+, the
' dependence drops out and a traveling wave results. The condition FV� = V+ states that
frictional forces remain unchanged by the reaction. For example, when the friction coefficient
is unchanged by the reaction (F = 1), and no net production of gas occurs in the reaction
(�g = 0), traveling waves are expected.

We note that (3.13) and (3.14) show �1 6= �2 so that the physical restriction �1; �2 6 1
implies that both �b = 1 and Y� = 0 cannot occur. At most one reactant can leak through the
reaction zone. In the reaction-leading (trailing) structure, �1 > (<)�2, so that �b = 1(Y� = 0).
We first consider reaction-leading structures and then reaction-trailing structures.

3.1. REACTION-LEADING STRUCTURE

For the reaction-leading structure, C > 0 and �2 < �1 6 1 so that (3.16) yields �b = 1. As
with the adiabatic solutions, reaction-leading structures cause complete conversion of the fuel.

Stoichiometric (Y� = 0) and kinetically limited (Y� > 0) cases arise, depending on the
value of Y�. We discuss the stoichiometric case first. When Y� = 0, Equation (3.19) shows
that

V+ = �U: (3.22)

Combination with (3.17) and (3.21) gives an implicit expression for Tb in terms of ',

"B

�

q

Tb � To
log(Tb=To) = �['+ F (1 + �o)(1� ')]: (3.23)
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The dimensional version of the expression is

~�[� ~f+ + ~f�(1 + �g ~Yo=�)(L� �)] =
g~�2

go
~Q

~Tb � ~To
log( ~Tb= ~To) (3.24)

The unknowns U; V�; C are given by (3.17), (3.18) and (3.20) in terms of Tb by

U2 =
4�

q2=(Tb � To)2 � (1� �(1 + �o))2 ; (3.25)

V� = U�(1 + �o); C = U(1� �(1 + �o)): (3.26–3.27)

Notice that the burning temperature Tb and, in turn, the wave structure do not depend on
the kinetic parameters Ko and ~E. Reactant supply determines the propagation of the wave
in the stoichiometric case. Kinetically limited solutions occur when �1 = 1. Equation (3.13)
gives C as a function of Tb,

C =
q2T 2

b (Tb � To)
�2 eE(1�1=Tb) � �

qTb(Tb � To)�1 e
1
2E(1�1=Tb)

: (3.28)

Equations (3.18) and (3.21) yield

V+

U
= J(Tb) �

"B
�

q
Tb�To

log(Tb=To)� �o�F (1� ')

F + (1� F )'
; (3.29)

so that (3.17), (3.18) and (3.20) combine to give an implicit expression for Tb in terms of ':

�
q

Tb � To

�
q2T 2

b (Tb � To)
�2 eE(1�1=Tb) � �

q2T 2
b (Tb � To)�2 eE(1�1=Tb) + �

= 1� �o� � J(Tb): (3.30)

The dimensional form of this relation is 
~Q

~Tb � ~To

!
( ~Q ~Tb)

22��soKoR ~T 2
�

e� ~E=(R ~Tb) � ~�� ~E ~Qc2
s(

~Tb � ~To)
2

( ~Q ~Tb)22��soKoR ~T 2
�

e� ~E=(R ~Tb) + ~�� ~E ~Qc2
s(

~Tb � ~To)2

= cs � �gcg �
g~�2

gocg
~Q~��1( ~Tb � ~To)

�1 log
�
~Tb
~To

�
� �gcg ~f�(L� �)

L ~f� + �( ~f+ � ~f�)
: (3.31)

The unknowns U; V+; V�, and Y� are then given by (3.18)–(3.21) as

U =
C

1� �o� � J(Tb)
; (3.32)

V+ = UJ(Tb); V� = V+ + �o�U; Y� =
J(Tb)� �

J(Tb) + �o�
: (3.33–3.35)
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Notice that for Y� > 0 we must have J(Tb) > �. For each set of parameters, we must use
(3.30) to determine the potential solution for Tb and then test it for J(Tb) > � to see if the
solution exists.

Figure 6. Burning Temperature at the middle of the sample as a function of the heat-loss parameter for reaction-
leading structure solutions. In (a) only kinetically controlled solutions exist and extinction occurs for large �.
In (b) Stoichiometric (solid) and Kinetically-Controlled (dashed) solutions both appear near the extinction point,
extinction occurs at the boundary between the two. Here, To = 0�2; E = 5; � = 0�5; �o = 0�01, and for (a)
� = 0�46; "B = 2�7, and F = 0�5. While for (b) � = 0�86; "B = 0�4, and F = 1�0.

Extinction occurs in the kinetically controlled mode for large � (see Figure 6a). In some
cases, the stoichiometric mode exists near the extinction point, but extinction does not occur
in the stoichiometric mode. It occurs at the boundary between stoichiometric and kinetically
controlled solutions (see Figure 6b). The burning temperature moves smoothly to a critical
value as � moves toward the extinction value �cr. This extinction limit is similar in nature to
that seen in many combustion problems for which heat losses are considered.

As � decreases, Tb; U and V+ all increase dramatically. The reduction in heat loss not only
allows higher temperatures, but these higher temperatures and longer heated regions cause
buoyancy to bring in more gas which further increases the reaction rate and temperature. This
feedback allows dramatic increases in burning rates and also allows combustion to continue
for long periods without external intervention.

3.2. REACTION-TRAILING STRUCTURE

For the reaction-trailing structure, C < 0 and �1 < �2 6 1 so that (3.15) yields Y� = 0. As
with the adiabatic solutions, reaction-trailing structure causes all oxidizer to be consumed.

Stoichiometric (�b = 1) and kinetically limited (�b < 1) cases arise, depending on the value
of �b. The stoichiometric case has the same formulas for its solution as the reaction-leading
stoichiometric case (3.22)–(3.27). The solutions differ only in that C becomes negative when
�(1 + �o) > 1. The boundary between stoichiometric reaction-leading and stoichiometric
reaction-trailing solutions is

�(1 + �o) = 1: (3.36)
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Kinetically limited solutions occur when �2 = 1. Equation (3.14) gives C as a function of
Tb,

�C =
q2T 2

b (Tb � To)
�2 eE(1�1=Tb) � �

qTb(Tb � To)�1 e
1
2 E(1�1=Tb)

: (3.37)

Equations (3.19) and (3.21) yield an implicit expression for Tb in terms of ',

� = J(Tb) �
"Bq��1(Tb � To)

�1 log(Tb=To)� �o�F (1� ')

F + (1� F )'
: (3.38)

The dimensional version of this expression is

~�� ~Y �1
o (L ~f� + ( ~f+ � ~f�)�) = g~�2

go
~Q( ~Tb � ~To)

�1 log( ~Tb= ~To)� �g ~� ~f�(L� �): (3.39)

The unknowns V+; V�; U , and �b are then given by (3.17)–(3.20) as

V+ = �(Tb � To)
�1q�1

p
C2 + 4�; (3.40)

V� = V+(1 + �o); U = C + V�; �b = V+=(�U): (3.41–3.43)

Notice that the restriction �b < 1 implies we must have

"�
qTb

Tb � To

�2

eE(1�1=Tb) � �

#
q > (1� �(1 + �o))(Tb � To)

�
"�

qTb

Tb � To

�2

eE(1�1=Tb) + �

#
: (3.44)

For each set of parameters, we must use (3.38) to determine the potential solution for Tb and
then test it to see if that solution exists.

As one might expect by the similarity in exponential decay in temperature, the reaction-
trailing and reaction-leading structures yield similar curves depicting the dependence of Tb
and other quantities on � (see Figure 7). The structure and temperature profiles are reversed,
but the heat-transfer processes occur at the same rate, so Tb and U depend on � in a similar
manner.

4. Conclusions

Upward buoyant FC is both similar to and different from forced forward FC. It is similar in that,
as in forced forward FC, a localized high-temperature domain (HTD), in which the tempera-
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Figure 7. (a) Burning Temperature at the middle of the sample as a function of the heat-loss parameter for reaction-
trailing structure solutions. Stoichiometric (solid) and Kinetically-Controlled (dashed) solutions are indicated. (b)
The Degree of Fuel Conversion associated with the solution in (a). Here, To = 0�2; � = 1�15; E = 5; "B =

0�4; F = 1�0; � = 0�5, and �o = 1�0.

ture is essentially constant, propagates along the sample. The length of the HTD grows slowly
with time. The reaction can occur at the leading or trailing edge of the HTD, depending on the
oxidizer mass fraction relative to stoichiometry. For �(1 + �o) > (<)1, the reaction occurs
at the leading (trailing) edge of the HTD. The resulting structure is referred to as a reaction
leading (trailing). Ahead of and behind the HTD, the temperature is essentially constant at
the cool temperature To, and there are thin layers connecting the HTD to the cool regions.
They are the combustion layer and the heat-transfer layer. In the reaction-leading (trailing)
structure, the combustion (heat-transfer) layer precedes the heat-transfer (combustion) layer.
Super-adiabatic temperatures are attained (cf. (2.22)) as the incoming gas absorbs heat from
the burned solid as it passes through the product region and transports it to the fresh solid fuel.
The combustion waves are stoichiometric or kinetically controlled, depending on the relative
rates of oxidizer supply and reaction kinetics. Equations (2.39) and (2.65) give conditions for
the appearance of stoichiometric and kinetically controlled solutions. The conditions show
that stoichiometric (kinetically controlled) combustion occurs when the oxidizer supply limits
(does not limit) the reaction. That is, when the burned portion of the sample is sufficiently
small (large), so that incoming flux is sufficiently small (large) that the reaction must (not)
wait for additional gas in order to proceed along the sample.

One significant difference between forced forward FC and upward buoyant FC is that
for the former, the incoming gas flux is fixed by external sources, while for the latter it is
determined by buoyancy induced by the combustion process itself. Hot gas rises and pulls
fresh gas in through the bottom of the sample. The fresh gas supplies oxidizer to the reaction
which releases more heat and causes more gas to rise. Buoyancy-induced flux depends on the
gravitational acceleration, the ambient pressure, the permeability of the porous matrix and on
the total heating of the gas in the sample. Thus, the amount of incoming gas is determined by
the size of the HTD which,in turn, is determined by the incoming gas flux. This buoyancy-
induced feedback also causes the propagation velocity to vary with time (cf. (2.21)) as the
HTD grows and more gas is available to feed the reaction, so that propagation will vary much
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more rapidly in upward buoyant combustion than in the forced case. We also expect that for
non-adiabatic conditions, the feedback can cause changes in stability and extinction limits
compared to those for forced forward FC at the same incoming flux.

Another difference between forced forward FC and upward buoyant FC is that in the latter
case the induced pressure gradient driving convection is small and limited by the hydrostatic
pressure drop (�gL) across the sample (B = 0(1), cf. discussion of (1.27)). This means that
combustion can only be realized in practice, if the permeability of the sample is high, since
otherwise it would require an extremely long sample. In contrast, for forced flow the driving
mechanism for convection is externally controlled, so that combustion can be realized, in
principle, for any permeability, if the pressure drop is large enough to overcome the resistance
of the sample.

In this paper, we determined the temperature profile including the burning temperature,
propagation velocity, induced gas flux, oxidizer consumption, and degree of fuel conversion
for the reaction-leading and trailing structures in both stoichiometric and kinetically controlled
waves. Descriptions of the variation in these quantities as the wave propagates through the
sample are obtained. As a general result, the intensity of combustion increases as the wave
moves through the sample (cf. (2.21)). The propagation velocity, incoming gas flux and, in
kinetically controlled cases, the burning temperature all increase as the heated portion of the
sample increases (cf. (2.31)–(2.36)).

In addition, predictions of parameter regions which support each structure and mode are
presented in terms of the parameters of the problem (cf. (2.39), (2.65), and (2.66)).

An analysis of the case in which the effect of heat losses to the external environment is
important is also presented. One interesting result is that buoyant forces must be sufficiently
large to support a wave when heat losses are significant. The heated region of the sample is
relatively short for the large heat loss case, so that the amount of hot gas is small and buoyancy
may not be sufficient to supply oxidizer to the reaction. Additional oxidizer can be supplied
only by an increase of buoyancy forces through larger gravitational accelerations, e.g., in a
centrifuge, high initial gas density, or high permeability of the sample.

One effect of buoyancy in downward combustion [17] is that ignition may be difficult,
because a significant portion of the sample must be heated to induce the incoming gas flux
needed to support the combustion wave. This is true even for adiabatic conditions. In downward
buoyant FC, the burning temperature depends on the amount of fuel converted which varies
with the gas flux and thus with the size of the burned region of the sample. The burned region
of the sample must be sufficiently large to insure a temperature which supports the reaction.
The conditions for ignition thus require that a specific fraction of the sample be heated. In
contrast, for upward combustion, ignition will occur as long as the temperature is sufficiently
large to support a reaction. Even if only a small region of the sample is heated, so that the
incoming gas flux is small, stoichiometric combustion will continue in which the burning
temperature is independent of the length of the burned region (cf. (2.22), (2.57)–(2.58)). A
high burning temperature is thus ensured as long as heat losses are not too large. The kinetically
controlled mode of propagation only occurs for high gas fluxes (cf. (2.39), (2.65)). In this case,
combustion is sufficiently intense that the temperature dependence on the length of the burned
region is insufficient to affect ignition.

Heat losses can cause extinction in the kinetic mode of propagation, however, and weaken
combustion in the stoichiometric case, until the wave becomes kinetically controlled (Figure 6).
Small heat loss allows large temperatures which drive large incoming gas flux through the
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sample. Thus, for small heat loss, the gas flux is large and kinetically controlled solutions are
obtained (Figures 6a, 7). As heat losses increase, burning temperatures and gas flux decrease
and the wave becomes stoichiometric, i.e., propagation is determined by the oxidizer supply.
Further increases in heat losses cause the wave to become kinetically controlled prior to
extinction, which occurs when heat losses exceed a critical value.

Buoyant FC has been studied experimentally in [11, 12, 18, 19, 20]. These studies provide
some insight into the controlling mechanisms of the process. Specifically, it was shown
[11, 19] that diffusion does not play a significant role in supplying oxidant to the reaction.
Rather, gravity-induced buoyant convection has been shown experimentally to be the dominant
mechanism of supply. The effect of ambient pressure Po on the process [19] was observed to
be as predicted by theory. Specifically, the velocity of propagation was observed to vary as
P 2
o , in agreement with our result. Note that the dependence of the velocity on Po is the same in

both the ignition and propagation stages, since it depends only on the nondimensionalization
of the time dependent problem. The data in [11, 20] shows that even for such an extremely
porous material as polyeurethane foam, with a void fraction which exceeds 90%, the effective
Lewis number is large (Le � 60). All these experimentally facts are incorporated in our
model. However, it appears that the lengths of the samples (L � 20 cm) employed in [11, 12,
18, 19] were insufficient for self-sustained buoyant FC waves to develop. Since the study of
the properties of such waves is precisely the subject of this paper, it is difficult to make direct
comparisons with experimental results, which can, at best, describe only the transient period
of ignition. To make such direct comparisons, it would be necessary to perform experiments
with longer samples and to measure independently the kinetic and thermophysical paramaters
of the process. Our analysis does show that the primary kinetic parameter is the stoichiometric
ratio � of oxygen/fuel consumption. Together with the heat capacities of the gas and the
solid, the value � determines the structure of the wave. Specifically, it determines whether the
structure is reaction-leading or reaction-trailing. It also determines the maximum temperature
developed in the process. We show that this temperature may exceed the adiabatic temperature,
calculated from thermodynamic arguments. The excess may be very large when � attains a
certain critical value. In this case the porous medium may be characterized as extremely
dangerous from the point of view of fire safety.

We do not describe the transition to flaming. To do so would require more detailed models
including multistep kinetics and phase transitions. We simply draw attention to the fact that
the temperature can reach quite high levels, which may initiate the transition process. We
note that the self-sustained quasisteady buoyant FC waves that we describe require porous
samples whose length is sufficiently larger than the length lc of the preheat layer, which can
be estimated as the ratio of the thermal diffusivity to the velocity of propagation.
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Declaration of the symbols

B Nondimensional buoyant flux ~T Temperature
c Heat capacity T Nondimensional temperature
~c1 Effective heat capacity of sample ~� Combustion wave velocity
C Nondimensional difference of products of U Nondimensional combustion wave velocity

velocities and heat capacities ~vg Gas velocity
D Diffusion coefficient V Nondimensional gas flux through reaction
~E Activation energy site
E Nondimensional activation energy ~W Reaction rate
~f Filtration coefficient W Nondimensional reaction rate
f Nondimensional filtration coefficient ~x Spatial variable
F Ratio of filtration coefficients x Nondimensional spatial variable
g Gravitational acceleration X Spatial variable on scale of combustion layer
H Heaviside step function ~Y Oxidizer mass fraction
Ko Pre-exponential factor Y Oxidizer mass fraction scaled by ambient
` Nondimensional length of high-temperature mass fraction

domain Z Zeldovich number
lC Length of combustion layer ~� Heat-loss coefficient
lh Length of heat-transfer layer � Nondimensional heat-loss coefficient
lHTD Length of high-temperature domain � Ratio of gas to solid heat capacities
l� Length scale of cooling " Length of combustion layer on scale of
L Length of sample sample
Le Lewis number � Degree of conversion
P Nondimensional pressure � Thermal conductivity
p Ratio of ambient pressure and hydrostatic � Stoichiometric coefficient oxygen/solid

pressure drop �g Stoichiometric coefficient gas/solid
~P Effective gas pressure �o Ratio of gas/oxygen stoichiometric coeffi-
q Nondimensional heat release cients
~Q Heat release of reaction per unit mass of solid � Porosity of the sample

reactant � Position of reaction front
r Ratio of gas to solid heat capacities per unit ' Nondimensional position of reaction front

volume ~�g Effective gas density
R Universal gas constant ~�s Effective solid density
~R R/(molecular weight of gas) � Nondimensional effective gas density
~t Temporal variable � Time dependent spatial coordinate on which
t Nondimensional temporal variable heat-transfer layer is stationary

Subscripts and superscripts

b Evaluated at reaction front o Initial or ambient value
cr Critical value �;+ Fresh fuel, product
g Gas so Initial solid
s Solid go Initial gas
� Reference value ad Adiabatic
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